跳至主要内容

3.6 Variation of Parameters

In this section,we will intoduce the gerneral method in principle at least, it can be applied

to any equation, and it requires no detailed assumptions about the form of the solution.

Method of Variation of Parameters

In gerneral, we consider

y+p(t)y+q(t)y=g(t)y'' + p(t)y' + q(t)y = g(t)

where pp , qq and gg are continuous functions. We assume that we know

yh=c1y1(t)+c2y2(t)y_h = c_1y_1(t) + c_2 y_2(t)

In this idea, we replace the constant c1c_1,c2c_2 by u1(t)u_1(t),u2(t)u_2(t) resp.\text{resp.}

y=u1(t)y1(t)+u2(t)y2(t)(a)y = u_1(t) y_1(t) + u_2(t) y_2(t) \quad --(a) y=u1(t)y1(t)+u1(t)y1(t)+u2(t)y2(t)+u2(t)y2(t)y' = u_1'(t) y_1(t) + u_1(t)y_1'(t) + u'_2(t) y_2(t) + u_2(t)y_2'(t)

Assume that u1(t)y1(t)+u2(t)y2(t)=0u_1'(t) y_1(t) + u'_2(t) y_2(t) = 0, we have

y=u1(t)y1(t)+u2(t)y2(t)y' = u_1(t)y_1'(t) + u_2(t)y_2'(t) y=u1(t)y1(t)+u1(t)y1(t)+u2(t)y2(t)+u2(t)y2(t)y'' = u_1'(t)y_1'(t) + u_1(t) y_1''(t) + u_2'(t)y_2'(t) + u_2(t)y''_2(t)

Now, we substituteyy,yy'and yy''to the orginal equation. We find that

u1(t(y1(t)+p(t)y1(t)+q(t)y1(t))+u2(t(y2(t)+p(t)y2(t)+q(t)y2(t))+u1(t)y1(t)+u2(t)y2(t)=g(t) \begin{aligned} u_1(t(y_1''(t)+p(t)y_1'(t)+q(t)y_1(t)) \\ +u_2(t(y_2''(t)+p(t)y_2'(t)+q(t)y_2(t)) \\ + u_1'(t)y_1'(t) + u_2'(t)y_2'(t) = g(t)\\ \end{aligned}

where y1y_1and y2y_2are the homogeneous solutions ,hence the equation above can be reduced to

u1(t)y1(t)+u2(t)y2(t)=g(t)(b)u_1'(t)y_1'(t) +u_2'(t)y_2'(t) = g(t) \quad --(b)

Since (a) and (b) forms a system of two linear algebraic equations for derivatives u1(t)u_1'(t) and u2(t)u_2'(t)of the unknown function. By Carmer's rule, we have:

u1(t)=y2(t)g(t)W[y1,y2](t),u2(t)=y1(t)g(t)W[y1,y2](t)u_1'(t) = -\frac{y_2(t)g(t)}{W[y_1 ,y_2](t)} ,\quad u_2'(t) = -\frac{y_1(t)g(t)}{W[y_1 ,y_2](t)}

Integrate both of them, and substitude into (a) ,you can get the answer.