2.6 Exact Differential Equations
THM
Let M ,N ,My,Nxare continuous in R={(x,y)∣ α<x<β, γ<y<δ
Then the equ(∗) is exact in R ⟺ My(x,y)=Nx(x,y)at each point in R
proof
Suppose (*) is an exact differential equation ,∃ ψ s.t. ∂x∂ψ=M(x,y) , ∂y∂ψ=N(x,y)
then ,My(x,y)=∂x∂y∂ψ=∂x∂y∂ψ, Myand Nxare continuous ,ψxy , ψyxare continuous.
Hence ,∂y∂x∂2ψ=∂x∂y∂2ψ ,My=Nx
Good Find a ψ(x) s.t. ψx=M , ψy=N, Integrating ψx=M w.r.t x
ψ(x,y)=∫x0xM(s,y) ds+h(y)=Q(x,y)+h(y) ,where Q(x,y)=∫x0xM(s,y) dsand x0is some specified constant with α<x<β
Differentiating Q(x,y)+h(y)w.r.ty
ψy(x,y)=∂y∂Q(x,y)+h′(y)=N(x,y), Then h′(y)=N(x,y)−∂y∂Q(x,y)
To show N(x,y)−∂y∂Q(x,y)only depends on y
∂x∂(N(x,y)−∂y∂Q(x,y))=Nx−∂y∂x∂2Q=Nx−My=0