Integrating Factor μ(x)
In general first-order linear differential equation in standard form:
dtdy+p(t)y=g(t)
In convenient ,we also write the equation in this form:
P(t)dtdy+Q(t)y=G(t)
then ,to solve this ODE, we tend to find a integrating factor μ(x) s.t. (μ(t)y)′=k(t)
How to find the Integrating Factor
P(t)dtdy+Q(t)y=G(t)
μ(x)P(t)dtdy+μ(x)Q(t)y=μ(t)G(t)
μ(t)dtdy+μ(t)P(t)Q(t)y=P(t)μ(t)G(t)
[μ(t)y]′=P(t)μ(t)G(t)
we can imply that μ′(t)=P(t)Q(t)μ(t) ,then
μ(t)=e∫P(t)Q(t)dt