跳至主要内容

2.1 Integration factor

Integrating Factor μ(x)\mu (x)

In general first-order linear differential equation in standard form:

dydt+p(t)y=g(t) \frac{dy}{dt} + p(t) y = g(t)

In convenient ,we also write the equation in this form:

P(t)dydt+Q(t)y=G(t)P(t)\frac{dy}{dt} + Q(t) y = G(t)

then ,to solve this ODE, we tend to find a integrating factor μ(x)\mu (x) s.t. (μ(t)y)=k(t)(\mu (t) y)' = k(t)

How to find the Integrating Factor

P(t)dydt+Q(t)y=G(t)P(t) \frac{dy}{dt} + Q(t)y = G(t) μ(x)P(t)dydt+μ(x)Q(t)y=μ(t)G(t)\mu (x) P(t) \frac{dy}{dt} + \mu (x) Q(t)y = \mu (t)G(t) μ(t)dydt+μ(t)Q(t)P(t)y=μ(t)G(t)P(t)\mu (t) \frac{dy}{dt} + \mu (t) \frac {Q(t)}{P(t)}y = \frac {\mu (t) G(t)}{P(t)} [μ(t)y]=μ(t)G(t)P(t)[\mu (t) y]' = \frac{\mu (t) G(t)}{P(t)}

we can imply that μ(t)=Q(t)P(t)μ(t)\mu '(t) = \frac{Q(t)}{P(t)} \mu (t) ,then

μ(t)=eQ(t)P(t)dt\mu (t) = e^{\int_{}^{} \frac{Q(t)}{P(t)} dt}