跳至主要内容

3.4 Repeated Roots; Reduction of Order

Solution of Repeated Roots

In this section, we are going to solve what if r1=r2r_1 = r_2

ay+by+cy=0(a)ay'' + by' +cy = 0 \quad --(a)

if r1=r2r_1 = r_2, then

y1(t)=c1eb2aty_1(t) = c_1 e^{\frac{-b}{2a}t}

To find second solution, we assume that

y=v(t)y1(t)=v(t)eb2aty = v(t)y_1(t) = v(t)e^{\frac{-b}{2a}t} y=v(t)eb2atb2av(t)eb2aty' = v'(t)e^{\frac{-b}{2a}t} - \frac{b}{2a}v(t)e^{\frac{-b}{2a}t} y=v(t)eb2atbav(t)eb2at+b24a2v(t)eb2aty'' = v''(t)e^{\frac{-b}{2a}t} - \frac{b}{a}v'(t)e^{\frac{-b}{2a}t} + \frac{b^2}{4a^2}v(t)e^{\frac{-b}{2a}t}

By substitude equation (a) ,cancelling the factor eb2ate^{\frac{-b}{2a}t}, rearranging the items, we find that

v=0v'' = 0 v=c1+c2tv = c_1 + c_2 t

then we have

y=c1eb2at+c2teb2aty = c_1 e^{\frac{-b}{2a}t} + c_2 t e^{\frac{-b}{2a}t}

Thus yy is a linear combination of the two solutions

y1(t)=eb2at,y2(t)=teb2aty_1(t) = e^{\frac{-b}{2a}t}, \quad y_2(t) = t e^{\frac{-b}{2a}t} W[y1,y2](t)=eb2aW[y_1 ,y_2](t) = e^{\frac{-b}{2a}}

Since ,W[y1,y2](t)W[y_1 ,y_2](t) never zero, y1y_1and y2y_2form a fundamental set of solutions.


Reduction of Order

Suppose that we know one solution y1(t)y_1(t) , not everywhere zero, of

y+p(t)y+q(t)y=0(b)y'' + p(t)y' + q(t)y = 0 \quad --(b)

To find the second solution, let

y=v(t)y1(t)y = v(t) y_1(t) y=v(t)y1(t)+v(t)y1(t)y' = v'(t)y_1(t) + v(t)y_1'(t) y=v(t)y1(t)+v(t)y1(t)+v(t)y1(t)+v(t)y1(t)y'' = v''(t)y_1(t) + v'(t)y_1'(t) + v'(t)y_1'(t) + v(t)y_1''(t)

Substitude yy, yy'and yy''to the equation (b)

y1v+(2y1+py1)v+(y1+p(t)y1+q(t)y1)v=0y_1 v'' + (2y_1' + py_1)v' + (y_1'' + p(t)y_1' + q(t)y_1)v = 0

Since y1y_1is a solution of equation (b).

y1v+(2y1+py1)v=0y_1 v'' + (2y_1' + py_1)v' = 0

Here becomes a first-order differential equation for the function vv'