3.1 Homogeneous DEs with constant coefficients Definition
Many second-order ordinary differential equations have the form
d 2 y d t 2 = f ( t , y , d y d t ) \frac{d^2y}{dt^2} = f(t ,y ,\frac{dy}{dt}) d t 2 d 2 y = f ( t , y , d t d y )
It is linear if the function has the form
d 2 y d t 2 = g ( t ) − p ( t ) d y d t − q ( t ) y \frac{d^2 y}{dt^2} = g(t)- p(t)\frac{dy}{dt} - q(t) y d t 2 d 2 y = g ( t ) − p ( t ) d t d y − q ( t ) y
In general,
y ′ ′ + p ( t ) y ′ + q ( t ) y = g ( t ) y'' + p(t)y' + q(t)y = g(t) y ′′ + p ( t ) y ′ + q ( t ) y = g ( t )
P ( t ) y ′ ′ + Q ( t ) y ′ + R ( t ) y = 0 P(t)y'' + Q(t)y' + R(t)y = 0 P ( t ) y ′′ + Q ( t ) y ′ + R ( t ) y = 0
if g ( t ) = 0 ⟹ homogeneous g(t) = 0 \Longrightarrow \text{homogeneous} g ( t ) = 0 ⟹ homogeneous
Initial Value Problem(IVP)
we consider that
{ a y ′ ′ + b y ′ + c y = 0 y ( 0 ) = y 0 , y ′ ( 0 ) = y 0 ′ \begin{cases} ay'' + by' +cy = 0\\ \quad \\ y(0) = y_0 ,\quad y'(0) = y_0'\\ \end{cases} ⎩ ⎨ ⎧ a y ′′ + b y ′ + cy = 0 y ( 0 ) = y 0 , y ′ ( 0 ) = y 0 ′
We start by seeking exponential solutions of the formy = e r t y = e^{rt} y = e r t ,where r is a parameter to be determined. Then it follows that y ′ = r e r t y' = re^{rt} y ′ = r e r t ,y ′ = r 2 e r t y' = r^2 e^{rt} y ′ = r 2 e r t Substituting these expressions.
( a r 2 + b r + c ) e r t = 0 (a r^2 + b r + c) e^{rt} = 0 ( a r 2 + b r + c ) e r t = 0
Since e r t ≠ 0 e^{rt} \neq 0 e r t = 0
a r 2 + b r + c = 0 a r^2 + b r + c = 0 a r 2 + b r + c = 0
This equation is called the characteristic equation for the differential equation
Assuming that the roots of the characteristic equation are real and different, let them be denoted by r 1 r_1 r 1 and r 2 r_2 r 2 , where r 1 ≠ r 2 r_1 \neq r_2 r 1 = r 2 . Then y 1 ( t ) = e r 1 t a n d y 2 ( t ) = e r 2 t y_1(t) = e^{r_1 t} \ and \ y_2(t) = e ^{r_2 t} y 1 ( t ) = e r 1 t an d y 2 ( t ) = e r 2 t
t h e n , ∃ c 1 , c 2 ∈ R s . t . y = c 1 e r 1 t + c 2 e r 2 t then ,\exist \ c_1 ,c_2 \in R \ s.t.\ y = c_1 e^{r_1t} + c_2 e ^{r_2t} t h e n , ∃ c 1 , c 2 ∈ R s . t . y = c 1 e r 1 t + c 2 e r 2 t
y ′ = c 1 r 1 e r 1 t + c 2 r 2 e r 2 t y' = c_1 r_1 e^{r_1 t} + c_2 r_2 e^{r_2 t} y ′ = c 1 r 1 e r 1 t + c 2 r 2 e r 2 t
y ′ ′ = c 1 r 1 2 e r 1 t + c 2 r 2 2 e r 2 t y'' = c_1 r_1^2 e^{r_1 t} + c_2 r_2^2 e^{r_2 t} y ′′ = c 1 r 1 2 e r 1 t + c 2 r 2 2 e r 2 t
Substituting these expression,
a y ′ ′ + b y ′ + c = c 1 ( a r 1 2 + b r 1 + c ) e r 1 t + c 2 ( a r 2 2 + b r 2 + c ) e r 2 t = 0 ay'' + by' + c = c_1 (ar_1^2 + b r_1 + c)e^{r_1 t} + c_2 (ar_2^2 + b r_2 + c)e^{r_2 t} = 0 a y ′′ + b y ′ + c = c 1 ( a r 1 2 + b r 1 + c ) e r 1 t + c 2 ( a r 2 2 + b r 2 + c ) e r 2 t = 0
Consider the initial value y ( t 0 ) = y 0 , y ′ ( t 0 ) = y 0 ′ y(t_0) = y_0 ,\ y'(t_0) = y_0' y ( t 0 ) = y 0 , y ′ ( t 0 ) = y 0 ′
{ c 1 e r 1 t 0 + c 2 e r 2 t 0 = y 0 c 1 r 1 e r 1 t 0 + c 2 r 2 e r 2 t 0 = y 0 ′ \begin{cases}c_1 e^{r_1t_0} + c_2 e ^{r_2t_0} = y_0\\ \\ c_1 r_1 e^{r_1 t_0} + c_2 r_2 e^{r_2 t_0} = y_0'\\ \end{cases} ⎩ ⎨ ⎧ c 1 e r 1 t 0 + c 2 e r 2 t 0 = y 0 c 1 r 1 e r 1 t 0 + c 2 r 2 e r 2 t 0 = y 0 ′
c 1 = y 0 ′ − y 0 r 2 r 1 − r 2 e − r 1 t 0 , c 2 = y 0 r 1 − y 0 ′ r 2 − r 1 e − r 2 t 0 c_1 = \frac{y_0'-y_0 r_2}{r_1 - r_2}e^{-r_1t_0},\ c_2 = \frac{y_0r_1 - y_0'}{r_2 - r_1} e^{-r_2 t_0} c 1 = r 1 − r 2 y 0 ′ − y 0 r 2 e − r 1 t 0 , c 2 = r 2 − r 1 y 0 r 1 − y 0 ′ e − r 2 t 0