跳至主要内容

3.1 Homogeneous DEs with constant coefficients

Definition

Many second-order ordinary differential equations have the form

d2ydt2=f(t,y,dydt)\frac{d^2y}{dt^2} = f(t ,y ,\frac{dy}{dt})

It is linear if the function has the form

d2ydt2=g(t)p(t)dydtq(t)y\frac{d^2 y}{dt^2} = g(t)- p(t)\frac{dy}{dt} - q(t) y

In general,

y+p(t)y+q(t)y=g(t)y'' + p(t)y' + q(t)y = g(t) P(t)y+Q(t)y+R(t)y=0P(t)y'' + Q(t)y' + R(t)y = 0

if g(t)=0homogeneousg(t) = 0 \Longrightarrow \text{homogeneous}


Initial Value Problem(IVP)

we consider that

{ay+by+cy=0y(0)=y0,y(0)=y0\begin{cases} ay'' + by' +cy = 0\\ \quad \\ y(0) = y_0 ,\quad y'(0) = y_0'\\ \end{cases}

We start by seeking exponential solutions of the formy=erty = e^{rt},where r is a parameter to be determined. Then it follows that y=rerty' = re^{rt},y=r2erty' = r^2 e^{rt}Substituting these expressions.

(ar2+br+c)ert=0(a r^2 + b r + c) e^{rt} = 0

Since ert0e^{rt} \neq 0

ar2+br+c=0a r^2 + b r + c = 0

This equation is called the characteristic equation for the differential equation

Assuming that the roots of the characteristic equation are real and different, let them be denoted by r1r_1 and r2r_2, where r1r2r_1 \neq r_2. Then y1(t)=er1t and y2(t)=er2ty_1(t) = e^{r_1 t} \ and \ y_2(t) = e ^{r_2 t}

then, c1,c2R s.t. y=c1er1t+c2er2tthen ,\exist \ c_1 ,c_2 \in R \ s.t.\ y = c_1 e^{r_1t} + c_2 e ^{r_2t} y=c1r1er1t+c2r2er2ty' = c_1 r_1 e^{r_1 t} + c_2 r_2 e^{r_2 t} y=c1r12er1t+c2r22er2ty'' = c_1 r_1^2 e^{r_1 t} + c_2 r_2^2 e^{r_2 t}

Substituting these expression,

ay+by+c=c1(ar12+br1+c)er1t+c2(ar22+br2+c)er2t=0ay'' + by' + c = c_1 (ar_1^2 + b r_1 + c)e^{r_1 t} + c_2 (ar_2^2 + b r_2 + c)e^{r_2 t} = 0

Consider the initial value y(t0)=y0, y(t0)=y0y(t_0) = y_0 ,\ y'(t_0) = y_0'

{c1er1t0+c2er2t0=y0c1r1er1t0+c2r2er2t0=y0\begin{cases}c_1 e^{r_1t_0} + c_2 e ^{r_2t_0} = y_0\\ \\ c_1 r_1 e^{r_1 t_0} + c_2 r_2 e^{r_2 t_0} = y_0'\\ \end{cases} c1=y0y0r2r1r2er1t0, c2=y0r1y0r2r1er2t0c_1 = \frac{y_0'-y_0 r_2}{r_1 - r_2}e^{-r_1t_0},\ c_2 = \frac{y_0r_1 - y_0'}{r_2 - r_1} e^{-r_2 t_0}