跳至主要内容

3.2 Solution of Linear Homogeneous Equations; the Wronskian

Differential Operator

Let p and q be continuous functions on an open interval I , for α<t<β\alpha < t < \beta. The cases for α=\alpha = -\inftyor β=\beta = \inftyor both , are included.Then for any function ϕ\phi that is twice differential on I , we define the differential operator L by the equation

L[ϕ]=ϕ+pϕ+qϕL[\phi] = \phi'' + p \phi' + q \phi

for example ,if p(t)=t2, q(t)=1+t, ϕ(t)=sin3tp(t) = t^2 ,\ q(t) = 1+t,\ \phi(t) = sin3t

L[ϕ](t)=(sin3t)+t2(sin3t)+(1+t)sin3tL[\phi](t) = (sin3t)'' + t^2(sin3t)' + (1+t)sin3t

we usually write this equation in the form

L[y]=y+p(t)y+q(t)y=0L[y] = y''+p(t)y'+q(t)y = 0

with the initial value y(t0)=y0,y(t0)=y0y(t_0) = y_0,\quad y'(t_0) = y_0'


Theorem 3.2.1 Existence and uniqueness Theorem

Consider the initial value problem

y+p(t)y+q(t)y=g(t),y(t0)=y0,y(t0)=y0y'' + p(t) y' + q(t) y = g(t),\quad y(t_0) = y_0, \quad y'(t_0) = y_0'

where p, q ,and g are continuous on an open interval I that contains the point t0t_0. This problem has exactly one solution y=ϕ(t)y = \phi (t),and the solution exists throughout the interval I.

  • Note : the initial problem has an unique solution on an interval I

Theorem 3.2.2 Principle of Superposition

if y1, y2y_1,\ y_2are two solutions of the differential equation

L[y]=y+p(t)y+q(t)y=0L[y] = y'' + p(t) y' + q(t)y = 0

then the linear combination c1y1+c2y2c_1y_1 + c_2 y_2is also a solution for any value of the constants c1, c2c_1 ,\ c_2

proof

L[c1y1+c2y2]=[c1y1+c2y2]+p[c1y1+c2y2]+q[c1y1+c2y2]=c1y1+c2y2+c1py2+c2py2+c1qy1+c2qy2=c1[y1+py1+qy1]+c2[y2+py2+qy2]=c1L[y1]+c2L[y2]\begin{split} L[c_1y_1 + c_2 y_2] &= [c_1y_1 + c_2 y_2]'' + p[c_1y_1 + c_2 y_2]' + q[c_1y_1 + c_2 y_2]\\ &= c_1y_1'' + c_2y_2'' + c_1py_2'+ c_2py_2'+ c_1qy_1 + c_2q y_2\\ &=c_1[y_1'' + py_1' + q y_1] + c_2[y_2'' + py_2' + q y_2]\\ &=c_1L[y_1] + c_2L[y_2] \end{split}

Note

  • W[y1,y2](x)W[y_1 ,y_2](x) is not everywhere zero iff c1y1+c2y2c_1 y_1 + c_2 y_2 contains all solutions of equation.
  • Therefore, y=c1y1(t)+c2y2(t)y = c_1 y_1(t) + c_2 y_2(t)is called general solution
  • y1y_1and y2y_2 are said to form a fundamental set of solutions iff Wy1,y20Wy_1 ,y_2 \neq 0