跳至主要内容

2.9 First-Order Difference Equations

Definition

yn+1=f(n,yn),n=0,1,2...y_{n+1} = f(n ,y_n) ,\quad n = 0 ,1 ,2...

It is called first-order difference equation. if f is a function of yny_n, the difference equation is linear, otherwise, it is nonlinear. The solutions of difference equation is a sequence of numbers y0,y1,y2y_0 ,y_1 ,y_2 that satisfy the equation for each n.


General case

yn+1=f(yn),n=0,1,2...y_{n+1} = f(y_n), \quad n = 0 ,1, 2...

theny1=f(y0),y2=f(y1)=f(f(y0)=f2(y0)y_1 = f(y_0) ,\quad y_2 = f(y_1) = f(f(y_0) = f^2(y_0)

In general , the nthn^{th} iterateyny_nis yn=fn(y0)y_n = f^n(y_0)

  • Equilibrium solutions

    Solutions for which yny_nhas the same value for all n


Linear Equations

Case-1

yn+1=ρnyn,n=0,1,2...y_{n+1} = \rho_ny_n,\quad n= 0 ,1 ,2...

In general ,yn=ρn1...ρ0y0,n=1,2,...y_n = \rho_{n-1}...\rho_0y_0 ,\quad n = 1 ,2 ,...

if ρn=ρ  n ,the equations becomes yn=ρny0\rho_n = \rho \ \ \forall n \text{ ,the equations becomes } y_n = \rho^n y_0

limnyn={0,if ρ<1;y0,if ρ=1;doesn’t exist , otherwise.\lim_{n \to \infty}{y_n} = \begin{cases} 0, \quad if \ |\rho| < 1; \\ \quad \\ y_0, \quad if \ \rho = 1; \\ \\ \text{doesn't exist , otherwise.} \end{cases}

Case-2

yn+1=ρyn+bn,n=0,1,2...y_{n+1} = \rho y_n + b_n,\quad n = 0,1,2 ... y1=ρy0+b0y_1 = \rho y_0 + b_0 y2=ρ(ρy0+b0)+b1=ρ2y0+ρb0+b1y_2 = \rho(\rho y_0 + b_0) + b_1 = \rho^2 y_0 + \rho b_0 + b_1 yn=ρny0+j=0n1ρn1jbjy_n = \rho^n y_0 + \sum_{j = 0}^{n-1} \rho^{n-1-j} b_j

In special case where bn=b0for all n ,the difference equations is \text{In special case where }b_n = b \neq 0\text{for all n ,the difference equations is }

yn+1=ρyn+by_{n+1} = \rho y_n + b

If ρ1,we can write the solution in the more compact form\text{If }\rho \neq 1, \text{we can write the solution in the more compact form}

yn=ρn(y0b1ρ)+b1ρy_n = \rho^n (y_0 - \frac{b}{1-\rho})+\frac{b}{1 - \rho}