跳至主要内容

2.4 Differences Between Linear and Nonlinear DEs

THM-1 (Existence and Unique for First-Order Linear ODE)

Statement

if p(t) is continuous on an open intervalI! y=ϕ(t)I \quad \exist ! \ y =\phi (t) satisfying y+p(t)y=q(t), tI and y=y0y' + p(t)y = q(t), \ \forall t \in I \ and \ y = y_0

Proof

Since P(t) is continuous on I ,we set μ(t)=et0tp(t)dt0 ,tI\mu(t) = e^{\int_{t_0}^{t}p(t)dt} \neq0 \ ,t \in I(μ(t)=μ(t)p(t)\mu '(t) = \mu(t) p(t))

We have μ(t)C\mu(t) \in C'(μ is diff.)\mu \ is \ diff.)

Multiplying (1) by μ(t)\mu(t), then we obtain [μ(t)y]=μ(t)q(t)[\mu(t)y]' = \mu(t)q(t)

Since q(t) is continuous on I ,,thus

μ(t)y(t)=t0tμ(t)q(t)dt+C\mu(t) y(t) = \int _{t_0}^{t} \mu(t)q(t) dt +C y(t)μ1(t)t0tμ(s)q(s)ds+Cy(t) - \mu^{-1}(t) \int_{t_0}^{t} \mu(s)q(s)ds + C

y=ϕ(t)y = \phi(t) exists , is differential and satisfy (1). Also , from the mitial condition (2), we determine uniquely c=y0c = y_0. Hence ,there is only one solution of (1)-(2).

THM-2 (First-Order Nonlinear ODE)

Statement

Let f(t,y)f (t ,y)and δfδy\frac{\delta f}{\delta y}be continuous in some rectangle R ,α<t<β\alpha < t <\beta ,γ<y<δ\gamma < y < \delta

R={(t,y)  α<t<β, γ<y<δ}R = \{ (t, y)\ | \ \alpha < t < \beta ,\ \gamma < y < \delta \}

containing (t0,y0)(t_0 ,y_0). Then , in some interval (t0h,t0+h)(α,β)(t_0 -h , t_0 + h) \subset (\alpha ,\beta)for some h>0h > 0 ,

! y=ϕ(t) s.t. y(t)=f(t,y) and y(t0)=y0\exist! \ y = \phi(t) \ s.t. \ y'(t) = f(t ,y) \ and \ y(t_0) = y_0

Remark

  • Thm-2 can imply Thm-1 (linear case)

    In the case of Thm-1 , f(t,y)=q(t)=p(t)yCf(t ,y) = q(t) = p(t)y \in C and δfδy(t,y)=p(t)C\frac{\delta f}{\delta y}(t ,y) = -p(t) \in C

    there is only one solution in some interval (t0+h,t0h)I(t_0 +h ,t_0 - h) \subset I

  • Uniqueness

    We can make sure that the graph of two solution cannot have any intersection.