跳至主要内容

2.5 Autonomous DEs ,Population Dynamics

Autonmous

Ex1 (Exponential Growth)

ϕ(t)\phi (t)is the popuation of the given species at time tt

dydt=f(y)\frac{dy}{dt} = f(y)

consider dydt=ry\frac{dy}{dt} = ry

  • r > 0 : increase
  • r < 0 : decline

Assume r > 0 ,and y(0)=y0y(0) = y_0 ,ϕ(t)=y0ert\phi(t) = y_0 e^{rt}

Ex2 (Logistic DEs)

r=h(y)r = h(y)

Condiser h(y) s.t. h(y) \congr > 0,when y is small

  • h(y) decrease as y grows larger
  • h(y) < 0 when y is suff large

Assume that h(y)=ray,a>0h(y) = r-ay ,\quad a > 0

Consider logistic equation:

dydt=(ray)y\frac{dy}{dt} = (r-ay)y dydt=r(1yk)y, where k=ra\frac{dy}{dt} = r(1- \frac{y}{k})y , \ where \ k =\frac{r}{a}
  • Find constant solution:
dydy=0r(1yk)y=0\frac{dy}{dy} = 0 \Longleftrightarrow r(1-\frac{y}{k})y = 0 the constant solutions arey=ϕ1(t)0, y=ϕ2kthe\ constant \ solutions \ are \quad y = \phi_1(t) \equiv0 ,\ y = \phi_2 \equiv k
  • Study for
f(y)=r(1yk)y=rk(yk2)2+rk4f( y) = r(1-\frac{y}{k})y = -\frac{r}{k}(y - \frac{k}{2})^2 + \frac{rk}{4} dydt={>0if 0<y<k<0if y>k\frac{dy}{dt} = \begin{cases} > 0 \quad if \ 0 < y < k \\ \quad \\ <0 \quad if \ y > k \\ \end{cases}

By Exsistence and Uniqueness Theorem ,no solution can intersect the equilibrium solution y=ky = k

  • Find d2ydt2\frac{d^2y}{dt^2}
d2ydt2=ddt(dydt)=ddtf(y)=f(y)dydt=f(y)f(y)\boxed{\frac{d^2y}{dt^2}} = \frac{d}{dt}(\frac{dy}{dt}) =\frac{d}{dt}f(y) = f'(y)\frac{dy}{dt} = \boxed{f'(y)f(y)} d2ydt2={>0if 0<y<k2 or y>k<0if k2<y<k\frac{d^2y}{dt^2} = \begin{cases} > 0 \quad if \ 0 < y < \frac{k}{2}\ or \ y > k \\ \quad \\ <0 \quad if \ \frac{k}{2}<y < k \\ \end{cases}

Note : y=k2y = \frac{k}{2}is an inflation points