2.5 Autonomous DEs ,Population Dynamics
Autonmous
Ex1 (Exponential Growth)
ϕ(t)is the popuation of the given species at time t
dtdy=f(y)
consider dtdy=ry
- r > 0 : increase
- r < 0 : decline
Assume r > 0 ,and y(0)=y0 ,ϕ(t)=y0ert
Ex2 (Logistic DEs)
r=h(y)
Condiser h(y) s.t. h(y) ≅r > 0,when y is small
- h(y) decrease as y grows larger
- h(y) < 0 when y is suff large
Assume that h(y)=r−ay,a>0
Consider logistic equation:
dtdy=(r−ay)y
dtdy=r(1−ky)y, where k=ar
dydy=0⟺r(1−ky)y=0
the constant solutions arey=ϕ1(t)≡0, y=ϕ2≡k
f(y)=r(1−ky)y=−kr(y−2k)2+4rk
dtdy=⎩⎨⎧>0if 0<y<k<0if y>k
By Exsistence and Uniqueness Theorem ,no solution can intersect the equilibrium solution y=k
- Find dt2d2y
dt2d2y=dtd(dtdy)=dtdf(y)=f′(y)dtdy=f′(y)f(y)
dt2d2y=⎩⎨⎧>0if 0<y<2k or y>k<0if 2k<y<k
Note : y=2kis an inflation points